Recognizing Supercell Storm Structure

Scott Blair NOAA/NWS Kansas City, MO

Why Supercells?

- All produce severe weather
- Most hail > 2" from supercells
- Responsible for most tornadoes

As a spotter:

- Important to be familiar supercell storm characteristics
- Quickly identify important parts of a storm
- Reading the sky (not just radar) critical for successful spotting

Objectives:

- Become familiar with supercell features
- How to read them and why they are important
- Supercell variations and evolution

Thunderstorm Spectrum

Single Cell

Multicell Cluster/Line

Supercell

- Brief, weak updraft
- Microbursts, small hail
 - Localized threat

- Moderate updraft
- Severe wind, hail < 1.75"
 - Medium threat

- Intense updraft
- All severe weather types
 - Significant threat

Parts of a Supercell

Convective Initiation

Anvil Cloud

Weak Strong

- Can gauge updraft strength by appearance Pulse-like, thin, solid, backsheared?
 - Watch for signs of change
 - Overshooting top present?

Mammatus Clouds

- Can form upstream or downstream from updraft
 - Spectacular sight!

- Cloud protrusions hanging from the anvil cloud
- Not an indicator of severity

Convective Updraft

Weak Strong

- Primary mature storm updraft
- Visually gauge for updraft strength/health
 - Best view behind the storm

(watch the edge of the updraft outline if out in front)

Convective Updraft

Looking West

Flanking Line

- Towering cumulus leading to the main updraft
- Watch for subsequent, strong updrafts on the flanking line

Inflow Tail

- Inflow Tails are attached to main updraft base
- Watch cloud elements: Utilize them to highlight the "action area"
 - Tails along the FFD may suggest general storm motion

Looking West Inflow Tail ©www.extremeinstability.com

Updraft Vault

Looking Wes

- Vertical side of updraft, closest to precipitation
 - Might visually appear "clear"
- Region frequent for active lightning, giant hail

Rain-Free Base

- Identify the updraft-downdraft interface region
 - Rain-free region under the main updraft base
 - Focus on this region for tornadic potential

Rain-Free Base

Low, medium-sized, flat rain-free base: watch for a lowering

Wall Cloud

- Attached, blocky extension from the main updraft base
 - Moves with storm, cyclonic rotation
 - Small in nature compared to storm
- Usual distinct slope towards FFD (think development)

Rear-flank Downdraft

- Important visual precursor to tornadogenesis
- Watch for "clear-slot" to cut around wall cloud
- Cyclonic rotation may increase, wall cloud may contract

Tornado © 2012 Scott Blair

Supercell Spectrum

Low-Precipitation (LP)

Wet-Classic

Classic

High-Precipitation (HP)

Low-Precipitation Supercell

- •Reduced precipitation production
- •Updrafts commonly small in size
- •Very large hail threat from vault area
 - •Tornadoes not a frequent threat

High-Precipitation Supercell

Wet-Classic Supercell

Wet-Classic Supercell

Splitting Supercells

Splitting Supercells

Photo Credits:

Scott Blair
Mike Hollingshead
Eric Nguyen
Amos Magliocco

Contact Information:

www.targetarea.net www.facebook.com/scottfblair

© 2012 Scott Blair

Thank You for your time!